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Introduction

During this talk, we will focus on the use of randomness in two main
areas:

low-rank approximation

kernel methods
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Johnson-Lindenstrauss Lemma

If we have n data points in Rd , there exists a linear map into Rk , k < d ,
such that pairwise distances between data points can be preserved up to
an ε tolerance, provided k > Cε−2 log n, where C ≈ 24 [JL84]. The proof
follows three steps [Mic09]:

Define a random linear map f : Rd → Rk by f (u) = 1√
k
R · u, where

R ∈ Rk×d is drawn elementwise from a standard normal distribution.

If u ∈ Rd , show E[‖f (u)‖22] = ‖u‖22.

Show that the random variable ‖f (u)‖22 concentrates around ‖u‖22,
and construct a union bound over all pairwise distances.
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Johnson-Lindenstrauss Lemma: Demonstration

Figure: Histogram of ‖u‖22 − ‖f (u)‖22 for a fixed u ∈ R1000, f (u) ∈ R10
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Deterministic Interpolative Decomposition

Given a matrix A ∈ Rm×n, we can compute an interpolative decomposition
(ID), a low-rank matrix approximation that uses A′s own columns
[Yin+18]. The ID can be computed using the column-pivoted QR
factorization:

AP = QR .

To obtain our low-rank approximation, we form the submatrix Qk using
the first k columns of Q. We then have the approximation

A ≈ QkQ
∗
kA ,

which gives us a particular rank-k projection of A.
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Randomized Interpolative Decomposition

We introduce a new method to compute randomized ID, by taking a
subset S of p > k distinct, randomly-selected columns from the n columns
of A. The algorithm then performs the column-pivoted QR factorization
on the submatrix:

A(:,S)P = QR

Accordingly we have the following rank k projection of A:

A ≈ QkQ
∗
kA ,

where Qk is the submatrix formed by the first k columns of Q.
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Deterministic Singular Value Decomposition

Recall the singular value decomposition of a matrix [16],

Am×n = Um×mΣm×nV
∗
n×n ,

where U and V are orthogonal matrices, and Σ is a rectangular
diagonal matrix with positive diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σr ,
where r is the rank of the matrix A.

The σi s are called the singular values of A.
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Randomized Singular Value Decomposition

Utilizing ideas from [HMT09], our algorithm executes the following steps
to compute the randomized SVD:

1 Construct a n × k random Gaussian matrix Ω

2 Form Y = AΩ

3 Construct a matrix Q whose columns form an orthonormal basis for
the column space of Y

4 Set B = Q∗A

5 Compute the SVD: B = U ′ΣV ∗

6 Construct the SVD approximation: A ≈ QQ∗A = QB = QU ′ΣV ∗
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Results - Testing 620× 187500 Matrix

Figure: Error Relative to Original Data
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Results - Testing 620× 187500 Matrix

Figure: Random ID Error and Time Relative to Deterministic ID

Figure: Random SVD Error and Time Relative to Deterministic SVD
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Eigenfaces

Using ideas from [BKP15], our eigenfaces experiment is based on the
LFW dataset [Hua+07]. This dataset contains more than 13,000
RGB images of faces, where each image has dimensions 250× 250.

We can flatten each image to represent it as vector of length
250 · 250 · 3 = 187500.

In our experiment we will only use 620 images from the LFW dataset.
This gives us a data matrix A of size 187500× 620.

We then can perform SVD on the mean-subtracted columns of A.

Figure: Original LFW Images
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Image Results

We obtain the following eigenfaces from the columns of the matrix U:

Figure: Eigenfaces Obtained using Deterministic SVD

Figure: Eigenfaces Obtained using Randomized SVD
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Kernel Methods

Kernel methods work by mapping the data into a high-dimensional
space to add more structure and encourage linear separability.

Suppose we have a feature map φ : Rn → Rm, m > n.

The ‘kernel trick’ is based on the observation that we only need the
inner products of vectors in the feature space, not the explicit
high-dimensional mappings.

k(x, y) = 〈φ(x), φ(y)〉

Ex. Gaussian/RBF Kernel: k(x, y) = exp
(
−γ‖x− y‖22

)
Kernel methods include kernel PCA, kernel SVM, and more.
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Randomized Fourier Features Kernel

We can sample random Fourier features to approximate a kernel [RR08].
Let k(x, y) denote our kernel, and p(w) the probability distribution
corresponding to the inverse Fourier transform of k .

k(x, y) =

∫
Rd

p(w)e−jw
T (x−y)dw

≈ 1

m

m∑
i=1

cos(wi
Tx + bi ) cos(wi

Ty + bi ) ,

where wi ∼ p(w), bi ∼ Uniform(0, 2π). For a given m, define

z(x) =
m∑
i=1

cos(wi
Tx + bi )

to yield the approximation k(x, y) ≈ 1
mz(x)z(y)T [Lop+14].
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Data for Kernel PCA Experiments

To test kernel PCA methods, we use a dataset that is not linearly
separable — a cloud of points surrounded by a circle:

Figure: Data used to test kernel PCA methods
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Randomized Kernel PCA Results

Figure: Random Fourier features KPCA results
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Kernel SVM

We may also use kernel methods for support vector machines (SVM).

The goal of an SVM is to find the (d − 1)-hyperplane that best
separates two clusters of d-dimensional data points.

In two dimensions, this is a line separating two clusters of points in a
plane.

Using the kernel trick, we can project inseparable points into a higher
dimension and run an SVM algorithm on the resulting points.
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Randomized Kernel SVM

Figure: Randomized Kernel SVM Accuracy and time results as m varies

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 27 / 35



Comparison of Deterministic and Randomized Kernel SVM

Using the MNIST dataset [LC10] we test 10000 images (784 features), for
a fixed γ:

Deterministic Kernel

Accuracy: 0.9195
Time: 37.99s

Randomized Kernel

Accuracy: Mean: 0.891, St. dev. 0.0042
Min: 0.881, Max: 0.9005

Mean Time: 2.14s
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Comparison of Deterministic and Randomized Kernel SVM

On 1000 MNIST images, we plot the accuracies of the deterministic and
random kernel SVMs as γ varies:

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 29 / 35



Application of Randomized Kernel SVM: Grid Search

Testing 100 γ values to identify the best one:

Deterministic Kernel, Series: 133.03s

Randomized Kernel, Series: 78.97s

Randomize Kernel, Parallel: 41.18s

Best γ value obtained from randomized method corresponds with
either best or second best deterministic γ (3 trials)

K̂ =
1

m
z(X)z(X)T
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Takeaways

When using large datasets, randomized algorithms are able to
maintain most of the accuracy of their deterministic counterpart,
while offering a huge reduction in computational cost

These algorithms are useful for matrix factorization/decomposition as
well as for kernel approximation
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Website

To explore more visit our website at the following link:
https://rishi1999.github.io/random-projections/
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